Hepatic VLDL production in ob/ob mice is not stimulated by massive de novo lipogenesis but is less sensitive to the suppressive effects of insulin.
نویسندگان
چکیده
Type 2 diabetes in humans is associated with increased de novo lipogenesis (DNL), increased fatty acid (FA) fluxes, decreased FA oxidation, and hepatic steatosis. In this condition, VLDL production is increased and resistant to suppressive effects of insulin. The relationships between hepatic FA metabolism, steatosis, and VLDL production are incompletely understood. We investigated VLDL-triglyceride and -apolipoprotein (apo)-B production in relation to DNL and insulin sensitivity in female ob/ob mice. Hepatic triglyceride (5-fold) and cholesteryl ester (15-fold) contents were increased in ob/ob mice compared with lean controls. Hepatic DNL was increased approximately 10-fold in ob/ob mice, whereas hepatic cholesterol synthesis was not affected. Basal rates of hepatic VLDL-triglyceride and -apoB100 production were similar between the groups. Hyperinsulinemic clamping reduced VLDL-triglyceride and -apoB100 production rates by approximately 60% and approximately 75%, respectively, in lean mice but only by approximately 20% and approximately 20%, respectively, in ob/ob mice. No differences in hepatic expression of genes encoding apoB and microsomal triglyceride transfer protein were found. Hepatic expression and protein phosphorylation of insulin receptor and insulin receptor substrate isoforms were reduced in ob/ob mice. Thus, strongly induced hepatic DNL is not associated with increased VLDL production in ob/ob mice, possibly related to differential hepatic zonation of apoB synthesis (periportal) and lipid accumulation (perivenous) and/or relatively low rates of cholesterogenesis. Insulin is unable to effectively suppress VLDL-triglyceride production in ob/ob mice, presumably because of impaired insulin signaling.
منابع مشابه
Hepatic VLDL production in ob/ob mice is not stimulated by massive de novo lipogenesis and is less sensitive to the suppressive effects of insulin
Hepatic VLDL production in ob/ob mice is not stimulated by massive de novo lipogenesis and is less sensitive to the suppressive effects of insulin Less suppression of VLDL production by insulin in ob/ob mice 66 ABSTRACT Type 2 diabetes mellitus in humans is associated with increased de novo lipogenesis (DNL), increased fatty acid (FA)-flux from peripheral tissues, decreased FA oxidation and hep...
متن کاملThe Role of Akt2 in Hepatic Lipid Metabolism
Insulin drives the global anabolic response to nutrient ingestion, regulating both carbohydrate and lipid metabolism. When insulin resistance occurs in Type 2 Diabetes Mellitus, dysregulation of both of these processes ensues, resulting in hyperglycemia and lipid abnormalities. One of the most prevalent morbidities associated with insulin resistance is the abnormal accumulation of triglycerides...
متن کاملAltered Hepatic Lipid Metabolism Contributes to Nonalcoholic Fatty Liver Disease in Leptin-Deficient Ob/Ob Mice
Nonalcoholic fatty liver disease (NAFLD) is strongly linked to obesity, insulin resistance, and abnormal hepatic lipid metabolism; however, the precise regulation of these processes remains poorly understood. Here we examined genes and proteins involved in hepatic oxidation and lipogenesis in 14-week-old leptin-deficient Ob/Ob mice, a commonly studied model of obesity and hepatic steatosis. Obe...
متن کاملCD36 deletion reduces VLDL secretion, modulates liver prostaglandins, and exacerbates hepatic steatosis in ob/ob mice.
Recent findings described the role of CD36-mediated signaling in regulating cellular calcium and the release of various bioactive molecules, including the prostaglandins, neurotransmitters, cholecystokinin, and secretin. Here we document the role of CD36 in the secretion of hepatic VLDL. CD36 deletion resulted in 60% suppression of VLDL output in vivo, and VLDL secretion was reduced in vitro us...
متن کاملHepatic insulin signaling regulates VLDL secretion and atherogenesis in mice.
Type 2 diabetes is associated with accelerated atherogenesis, which may result from a combination of factors, including dyslipidemia characterized by increased VLDL secretion, and insulin resistance. To assess the hypothesis that both hepatic and peripheral insulin resistance contribute to atherogenesis, we crossed mice deficient for the LDL receptor (Ldlr-/- mice) with mice that express low le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Diabetes
دوره 52 5 شماره
صفحات -
تاریخ انتشار 2003